
Winning colourful Nim with the eeny-meeny rule

Dou-Dou Liu, Olly Britton

August 2025

1 Introduction

Nim is a game where two players take turns removing stones (“nimming”) from different piles.
On each player’s turn, they can remove as many stones as they want, but all have to be from
one pile. The player who makes the last move wins, or equivalently, the player who is left with
no remaining moves loses.

This simple game turns out to be surprisingly deep in the field of mathematics and com-
puter science known as combinatorial game theory [1], which is concerned for the most part
with beating opponents in two-player perfect information games, such as tic-tac-toe, checkers,
and Go. Specifically, there is a result called the Sprague-Grundy theorem [5], which states
(informally) that every combinatorial game in which each player has access to the same set of
moves in each of their turns is equivalent to a game of Nim. Combinatorial games like this are
called “impartial games”.

This means the following – if you are playing an impartial game, and:

1. You are a perfect Nim player and

2. You know how to convert positions in this game into a game of Nim

then you can always win that impartial game.
Luckily, perfect play at Nim is reasonably easy if you know the trick, a result called Bouton’s

theorem [2], which says that you can always guarantee a win if, on your turn, you remove stones
to make the bitwise XOR (sometimes called the nim-sum) of all the pile sizes equal to zero.

1



Figure 1: An example game of Nim, annotated with the Grundy value for the overall position.

Calculating the bitwise XOR of many numbers sounds difficult, but with enough practice it
becomes easy enough that you can even do it in your head while playing.

Hence, the bottleneck in winning at impartial games is determining an efficient procedure
for how to convert positions in that game into a game of Nim. This is often a very non-trivial
process, and for many impartial games even basic questions about the structure of this process
have been open problems for over 40 years [1].

In this article, we present a new variant of Nim called “Colourful Nim” based on the in-
troduction of colours to the individual stones. We then present an efficient rule for converting
positions in this game into equivalent games of Nim, initially discovered by computer search, and
prove its correctness. Finally, we end with some open questions about further generalisations
of this game for which the equivalent Nim games are still unknown.

2 Colourful Nim

Suppose you’re playing Nim with a set of English pool balls which are red and yellow, and you
add the rule that you can only remove sections of contiguous colour from the tops of each pile
1.

You could also play this game with cards facing up and down, knives and forks, bananas
and apples, and so on. You just need two distinguishable items you can make piles out of.

1An interactive version of this game is available online

2

https://projects.ollybritton.com/games/colourful-nim


The winning strategy for just one pile is reasonably straightforward to work out (consider
which moves you can force your opponent to take). But when there are multiple piles, things
are a lot more interesting and working out the best move is non-trivial.

2.1 A winning strategy for multiple piles

The following gives the perfect strategy for any number of piles. To describe the winning
strategy, we will need some notation.

Notation: Write (n1, n2, . . . , nk) for a pile with nk balls of one colour at the top, followed
by nk−1 balls of the next colour, followed by nk−2 of the original colour, and so on, all the way
until n1 which gives the number of balls in the bottom section of the pile.

Note that for all practical purposes when trying to win, it doesn’t matter if the pile starts
yellow or starts red, it is really only the sequence of colour changes that matters.

3



The strategy is similar to ordinary Nim. In ordinary Nim, you win by making the XOR of
all pile sizes equal to zero. Now instead of making the XOR of all the pile sizes equal to zero,
you make the XOR of the “Grundy values” of each pile equal to zero. Write G(n1, n2, . . . , nk)
for the Grundy value of the pile (n1, n2, . . . , nk).

It’s not necessary to know exactly what “Grundy value” means to win, we just need to
know how to calculate it. But intuitively, the Grundy value of a pile tells you the size of the
equivalent Nim heap as guaranteed to exist by the Sprague-Grundy theorem.

The empty game has Grundy value zero, or in the notation, G() = 0. If the pile is just of
one colour, then the Grundy value is just the number of balls in that pile. In our notation, this
means G(n1) = n1. This is intuitive since a pile with no colour changes is equivalent to a game
of ordinary Nim.

To calculate the Grundy value for piles with colour changes, things get a bit more compli-
cated. To do this, you need the “eeny-meeny rule”.

2.2 The eeny-meeny (E-M) rule

Suppose you are looking at a pile (n1, n2, . . . , nk). The rule is:

G(n1, n2, . . . , nk) =

{
nk − 1 if the Eeny-Meeny (E-M) condition is met

nk otherwise.
(1)

So either G(n1, n2, . . . , nk) is nk or nk − 1, and the E-M condition tells you if you need to
subtract one from nk. So when is the E-M condition met?

• Start by looking at the top of the pile, nk, and work your way down each section of colour
in steps, saying “eeny” and “meeny” alternately.

– Call nk eeny compared to nk−1 if nk < nk−1 (exiguous, very small in size or amount).

– Call nk meeny compared to nk−1 if nk > nk−1 (massive, large and heavy or solid).

• If you say “eeny” moving from nk to nk−1 and nk is eeny compared to nk−1 (i.e., nk <
nk−1), then the condition is met! You should subtract one, so G(n1, n2, . . . , nk) = nk − 1
in this case.

• If you say “meeny” moving from nk to nk−1 and nk is meeny compared to nk−1 (i.e., nk >
nk−1), then the condition is also met! You should subtract one, so G(n1, n2, . . . , nk) =
nk − 1 in this case.

• If nk = nk−1, continue working your way down the pile.

• If nk is meeny (or eeny) compared to nk−1 when it is supposed to be eeny (or meeny,
respectively), then you can stop checking. The condition is not met, and you can stop
looking.

• There is one more special case: if you say eeny as you reach the end of the pile, then n2

can be eeny compared to n1 with equality, so n2 ≤ n1 is a valid comparison.

4



In more mathematical notation, you’re applying the formula:

G(n1, n2, . . . , nk) =



nk − 1

if nk < nk−1, or

nk = nk−1 > nk−2, or

nk = nk−1 = nk−2 < nk−3, or
...{

nk = · · · = n2 > n1 if k is odd

nk = · · · = n2 ≤ n1 if k is even

nk otherwise

(2)

for k ≥ 2.
This looks quite complicated, but it is just a rule that lets you work out whether the Grundy

value is the number of balls in the top section, or that number minus one. Some illustrations
of this process are included in 2.

This formula looks unwieldy and does not capture the simplicity of the procedure in practice.
Hence, we introduce some new notation to simplify the formula and streamline the proofs later
on.

The piecewise function G in (2) can be seen as a more complicated version of a function f ,
given by

f(x) =

{
f1(x) if p(x) is True

f2(x) otherwise,

=

{
f1(x) p(x)

f2(x) ¬p(x),

where p(x) is a mathematical proposition (or statement) and ¬ is the logical negation operator.
We only consider cases where the statement takes the value True or False. We emphasise the
dependence of the statement p(x) on the variable x. In the second equality we suppress the
notation to make it tidier, this becomes important for more complicated statements. Note, the
¬p(x) could be replaced with “otherwise”, the two being logically equivalent.

2.2.1 Propositions

We use some basic results from propositional logic [4] to help us simplify our notation. For
propositions p and q, write (

p, q
)
= p ∧ q,(

p
q

)
= p ∨ q,

where ∧ and ∨ are the logical “and” and “or” operators, respectively. In this notation, the
distributive laws for the propositions p, q and r become(

p,

(
q
r

))
=

((
p, q

)(
p, r

)) , (D1)(
p(
q, r

)) =

((
p
q

)
,

(
p
r

))
. (D2)

5



We omit the nested brackets when the structure is unambiguous. For example,(
p
q, r

)
=

(
p(
q, r

)) .

Additionally, De Morgan’s Laws become

¬
(
p
q

)
=

(
¬p,¬q

)
, (DM1)

¬
(
p, q

)
=

(
¬p
¬q

)
. (DM2)

We will use square brackets [·] to signify propositions when it may be unclear. For exam-
ple, given n1 and n2, [n1 < n2] is a proposition and so is ¬[n1 = n2] which is equivalent to(
[n1 < n2]
[n1 > n2]

)
. Another noteworthy example is

(
[n1 < n2], [n1 > n2]

)
= False for any n1 and n2.

This is all elementary Boolean logic, but one should familiarise themselves with the notation to
proceed with confidence.

Using our new notation, the formula for the Grundy value (2) becomes

G(n1, n2, . . . , nk) =

{
nk − 1 Ek(n1, n2, . . . , nk)

nk otherwise,
(3)

where

Ek(n1, n2, . . . , nk) =



[nk < nk−1]
[nk = nk−1 > nk−2]
[nk = nk−1 = nk−2 < nk−3]

...{
[nk = · · · = n2 > n1] if k is odd

[nk = · · · = n2 ≤ n1] if k is even


(4)

for k ≥ 2.

6



2.3 Example calculations

Here are some illustrations.

Figure 2: Example Grundy calculations for eight different piles of colourful Nim.

2.4 Winning (or losing)

After you’ve done this calculation for each pile, you’ll have a collection of Grundy values g1, g2,
..., gm, where m is the number of piles. The best move to make is to make the bitwise XOR of
all these values equal to zero, and in fact all other moves are losing.

More specifically, writing gi ⊕ gj for the bitwise XOR of two Grundy values gi and gj , there
are two cases:

• If you calculate g1 ⊕ g2 ⊕ · · · ⊕ gm = 0 at the start of your turn, then you are in trouble

7



since if your opponent plays perfectly, you have lost. In this case, your best bet is to move
into the most complicated position you can spot, hoping they won’t be able analyse it
(the so-called “enough-rope” principle [1]).

• Otherwise, g1 ⊕ g2 ⊕ · · · ⊕ gm ̸= 0. In this case, you can force a win. To do this, like in
ordinary Nim, you should play a move that changes the bitwise XOR of all the piles to
be zero.

2.5 Example games

What’s the best move in a game with just a single pile?

(a) An example game starting with the position (1, 2, 2, 2).

(b) The same game annotated with the Grundy value of each intermediate pile.

Figure 3: A game starting with a single pile.

Note that we follow the convention that we play the first move. You don’t need the full
complication of the E-M rule when there is just one pile, it’s reasonably easy to see which move
wins. But it is vital when there is more than one pile.

8



Figure 4: A game starting with two piles.

The Grundy value of the first pile is 2, and the Grundy value of the second is 1. To win,
you therefore make the Grundy value of the first pile also 1, since 1⊕ 1 = 0. To do this, remove
just one ball from the first pile. Figure 4 shows an example game where you make that move.

Figure 5: A game starting with more complicated piles.

Figure 5 shows a more complicated game, now the piles are unequal. The move here is to
take just one ball from the pile on the right. There’s lots of ways the game can unfold from this
point, but you win in all of them.

How many winning moves are there in the game shown in Figure 6?

9



Figure 6: A game starting with five piles.

There are in fact no winning moves. This is because the Grundy values are 1, 0 ,1, 1 and
1, and 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 0. Any move you make will move to a position where the XOR is
nonzero, and so if your opponent is using the E-M strategy, they will be able to win.

3 Proof of correctness

We now show that the eeny-meeny rule always gives the winning strategy. The Sprague-Grundy
theorem [5] states that any position in an impartial game b is equivalent to a game of Nim of
size given by the Grundy value of that position G(±p). The Grundy value of a position is
defined as follows:

G(p) = mex{G(p′) | p′ is reachable from p},
G() = 0.

(5)

If we can calculate the Grundy value for each pile in colourful Nim, say g1, g2, . . . , gm, then
we can find the Grundy value of the overall game (where the possible moves are considered
across every pile) by taking the bitwise XOR of each: g1 ⊕ g2 ⊕ · · · ⊕ gm. As a consequence
of other results, making sure that g1 ⊕ g2 ⊕ · · · ⊕ gm = 0 at the end of your turn is enough to
guarantee a win.

Here mex is the minimum excludant [3]: the smallest non-negative integer not appearing
in the set. So the function G assigns a natural number to every position. However, it is not
injective since many positions can have the same Grundy value. Note also that the recursive
nature of this definition makes calculating the Grundy value directly from this definition very
difficult (especially without computer assistance) since you have to enumerate the entire game
tree.

We will show that for an arbitrary pile p in colourful Nim, its Grundy value can be calculated
by the eeny-meeny rule, which takes time linear in the size of the pile and is straightforward to
do mentally.

Let N be the union of all positive integer sequences of finite length, or

N =
⋃
k∈N

Zk
>0 = Z0

>0 ∪ Z>0 ∪ Z2
>0 ∪ Z3

>0 ∪ · · · ,

10



with

N = {0, 1, 2, . . .},
Z>0 = {1, 2, 3, . . .}.

Note that Z0
>0 is not empty; it contains exactly one element: the empty tuple (). Then the

space of all possible positions in the two-coloured Nim game is exactly N . Now, the empty
tuple represents the empty game, ⟨empty⟩.

The possible moves from the position (n1, n2, . . . , nk) are to:

• (n1, n2, . . . , nk−1), which corresponds to removing all the balls in the top section.

• For each ℓ < nk, (n1, n2, . . . , nk − ℓ), which corresponds to removing ℓ balls from the top
section.

In our case, we have:

G(n1, n2, . . . , nk) = mex
(
{G(n1, n2, . . . , nk−1)} ∪ {G(n1, n2, . . . , nk − ℓ) | ℓ < nk}

)
. (6)

From this it is clear that G(n1) = n1, since by induction

G(n1) = mex{G(), G(1), . . . , G(n1 − 1)}
= mex{0, 1, . . . , n1 − 1}
= n1.

So justifying the Eeny-Meeny rule is the same as proving the following:

mex
(
{G(n1, n2, . . . , nk−1)}∪{G(n1, n2, . . . , nk − ℓ) | ℓ < nk}

)
=

{
nk − 1 if the E-M condition is met

nk otherwise.

(7)

Or equivalently:

mex
(
{G(n1, n2, . . . , nk−1)}∪{G(n1, n2, . . . , nk − ℓ) | ℓ < nk}

)
=

{
nk − 1 Ek(n1, n2, . . . , nk−1)

nk otherwise.

(8)

So far, the E-M rule says nothing about piles where k = 1, but we can define E1 to be always
False so that (8) is true for k = 1. From the recursive definition, we have

G(n1) = mex{G(), G(1), . . . , G(n1 − 1)}
= mex{0, 1, . . . , n1 − 1}
= n1,

and using the E-M condition

G(n1) =

{
n1 − 1 E1
n1 otherwise

=

{
n1 − 1 False

n1 otherwise

= n1,

so the two definitions agree.

11



3.1 A warmup: true when k = 2

The E-M rule for k = 2 says that:

G(n1, n2) =

{
n2 − 1 [n2 ≤ n1]

n2 otherwise.

We want to show that this is indeed equivalent to the actual definition:

G(n1, n2) = mex
(
{G(n1)} ∪ {G(n1, n2 − ℓ) | ℓ < n2}

)
.

To do this, we can induct on n2. The base case is n2 = 1:

G(n1, 1) = mex{G(n1)}
= mex{n1}

=

{
0 [n1 ̸= 0]

1 otherwise

=

{
0 [1 ≤ n1]

1 otherwise,

which is indeed the E-M rule for k = 2.
Now consider G(n1, n2) where n2 > 1. By strong induction, we can assume that for all

G(n1, n2 − ℓ), the E-M rule works, i.e.,

G(n1, n2 − ℓ) =

{
n2 − ℓ− 1 [n2 − ℓ ≤ n1]

n2 − ℓ otherwise.

By the definition of G, we have that:

G(n1, n2) = mex
(
{G(n1)} ∪ {G(n1, n2 − ℓ) | ℓ < n2}

)
= mex{G(n1), G(n1, 1), G(n1, 2), . . . , G(n1, n2 − 1)}
= mex{n1, G(n1, 1), G(n1, 2), . . . , G(n1, n2 − 1)}.

Now we consider the cases:
Case 1: n2 ≤ n1. If this is true, then it must also be true that n2 − ℓ ≤ n1 for all l < n2. This
means the E-M condition is satisfied for each G(n1, n2 − ℓ), hence:

G(n1, n2) = mex{n1, 0, 1, . . . , n2 − 2}
= n2 − 1.

So this case gives the E-M rule as we hope.
Case 2: n2 > n1. Then n1 = n2 −m for some m > 0. Then:

G(n1, n2 − ℓ) =

{
n2 − ℓ− 1 [n2 − ℓ ≤ n1]

n2 − ℓ otherwise

=

{
n2 − ℓ− 1 [ℓ ≥ m]

n2 − ℓ otherwise.

Plugging this into the definition for G(n1, n2), we have:

G(n1, n2) = mex{G(n1), G(n1, 1), . . . , G(n1, n2 −m), G(n1, n2 −m+ 1), . . . , G(n1, n2 − 1)}
= mex{n1, 0, . . . , n2 −m− 1, n2 −m+ 1, . . . , n2 − 1}.

12



Since n1 = n2 −m, this means G(n1, n2) = n2 as we hope.
Combining the cases gives us a general formula for G(n1, n2):

G(n1, n2) =

{
n2 − 1 [n2 ≤ n1]

n2 otherwise,

which is exactly the E-M rule for k = 2.

3.2 A useful lemma

It is possible to adapt the proof for the k = 2 case to show a stronger and more general result.

Lemma 3.1.

G(n1, n2, . . . , nk) =

{
nk − 1 [nk ≤ G(n1, n2, . . . , nk−1)]

nk otherwise.
(⋆)

Proof. We induct on k. The base cases are:

G(n1) = n1,

G(n1, n2) =

{
n2 − 1 [n2 ≤ G(n1)]

n2 otherwise,

which is what we have just verified above.
Now consider G(n1, n2, . . . , nk) where k > 2. By strong induction on k, we can assume that

(⋆) holds for G(n1, n2, . . . , nk−1).

G(n1, n2, . . . , nk) = mex
(
{G(n1, n2, . . . , nk−1)} ∪ {G(n1, n2, . . . , nk − ℓ) | ℓ < nk}

)
.

We want to verify that (⋆) holds for this particular value of k. To do this, we now induct on
nk, like how we inducted on n2 for the k = 2 case.

Now inducting on nk, the base case we need to verify is that for G(n1, n2, . . . , nk−1, 1):

G(n1, n2, . . . , nk−1, 1) = mex{G(n1, n2, . . . , nk−1)}

=

{
0 [G(n1, n2, . . . , nk−1) > 0]

1 otherwise

=

{
0 [1 ≤ G(n1, n2, . . . , nk−1)]

1 otherwise

as required. So that establishes the base case for the induction on nk.
Now assume nk > 1. Like in the k = 2 case, we’ll break it down by cases again:

Case 1: nk ≤ G(n1, n2, . . . , nk−1). If this is true, then it must also be true that nk − ℓ ≤
G(n1, n2, . . . , nk−1) for all ℓ < nk, and so inductively:

G(n1, n2, . . . , nk) = mex{G(n1, n2, . . . , nk−1), 0, 1, . . . , nk − 2}
= nk − 1

So (⋆) is correct in this case.
Case 2: nk > G(n1, n2, . . . , nk−1). Then G(n1, n2, . . . , nk−1) = nk −m for some m > 0. Then:

G(n1, n2, . . . , nk − ℓ) =

{
nk − ℓ− 1 [nk − ℓ ≤ G(n1, n2, . . . , nk−1)]

nk − ℓ otherwise

=

{
nk − ℓ− 1 [ℓ ≥ m]

nk − ℓ otherwise.

13



Plugging this into the definition for G(n1, n2, . . . , nk), we have:

G(n1, . . . , nk) = mex
(
{G(n1, . . . , nk−1), G(n1, . . . , nk−1, 1), . . . , G(n1, . . . , nk−1, nk −m),

G(n1, . . . , nk−1, nk −m+ 1), . . . , G(n1, . . . , nk−1, nk − 1)}
)

= mex{G(n1, . . . , nk−1), 0, . . . , nk −m− 1, nk −m+ 1, . . . , nk − 1}.

Since G(n1, n2, . . . , nk−1) = nk −m, this means G(n1, n2, . . . , nk) = nk as we hope.

3.3 A breather

Here’s what we’ve shown so far: by definition, the Grundy value of a position is defined recur-
sively by:

G() = 0,

G(n1, n2, . . . , nk) = mex
(
{G(n1, n2, . . . ,nk−1} ∪ {G(n1, n2, . . . , nk − ℓ) | ℓ < nk}

)
.

(9)

We now know the following for certain:

G(n1) = n1 (10)

G(n1, n2) =

{
n2 − 1 [n2 ≤ n1]

n2 otherwise,
(11)

and we have the more general formula:

G(n1, n2, . . . , nk) =

{
nk − 1 [nk ≤ G(n1, n2, . . . , nk−1)]

nk otherwise.
(⋆)

This is still a long way from proving the full E-M rule, which says that:

G(n1, n2, . . . , nk) =

{
nk − 1 Ek(n1, n2, . . . , nk)

nk otherwise,

where

Ek(n1, n2, . . . , nk) =



[nk < nk−1]
[nk = nk−1 > nk−2]
[nk = nk−1 = nk−2 < nk−3]

...{
[nk = · · · = n2 > n1] if k is odd

[nk = · · · = n2 ≤ n1] if k is even


for k ≥ 2. In other words, the E-M rule gives a non-recursive formula for the Grundy value of
an arbitrary position.

3.4 Full correctness for any k

We have shown that the Grundy value of any position can be calculated using the formula (⋆).
Restating it in terms of the propositions Ωk(n1, n2, . . . , nk) as defined in (15), along with the
base case (since this is still recursively defined), gives us:

G(n1) =

{
n1 − 1 Ω1(n1)

n1 ¬Ω1(n1),
(12)

G(n1, n2, . . . , nk) =

{
nk − 1 Ωk(n1, n2, . . . , nk)

nk ¬Ωk(n1, n2, . . . , nk),
(13)

14



where

Ω1(n1) = False, (14)

Ωk(n1, n2, . . . , nk) = [nk ≤ G(n1, n2, . . . , nk−1] (15)

for k ≥ 2.
Recall that the Eeny-Meeny conditions are statements that are evaluated given a position

(n1, n2, . . . , nk); they are defined using our propositional notation as follows:

E1(n1) = False (16)

Ek(n1, n2, . . . , nk) =



[nk < nk−1]
[nk = nk−1 > nk−2]
[nk = nk−1 = nk−2 < nk−3]

...{
[nk = · · · = n2 > n1] if k is odd

[nk = · · · = n2 ≤ n1] if k is even


. (17)

Hence, we wish to show the equivalence between Ωk and Ek. This would establish that the
Eeny-Meeny rule (3) is fundamentally the same as (⋆) and thus, also the original recursive
“mex” definition (5).

To prove this, we notice two useful results.

Lemma 3.2. For k ≥ 1,

Ωk+1(n1, n2, . . . , nk+1) =

(
[nk+1 < nk]
[nk+1 = nk] , ¬Ωk(n1, n2, . . . , nk)

)
.

Proof. Using the formula for G(n1, n2, . . . , nk) from 13 and basic propositional logic, we have:

Ωk+1(n1, n2, . . . , nk+1) = [nk+1 ≤ G(n1, n2, . . . , nk)]

=

[
nk+1 ≤

{
nk − 1 Ωk(n1, n2, . . . , nk)

nk ¬Ωk(n1, n2, . . . , nk)

]

=

(
[nk+1 < nk] , Ωk(n1, n2, . . . , nk)
[nk+1 ≤ nk] , ¬Ωk(n1, n2, . . . , nk)

)

=

[nk+1 < nk] , Ωk(n1, n2, . . . , nk)
[nk+1 < nk] , ¬Ωk(n1, n2, . . . , nk)
[nk+1 = nk] , ¬Ωk(n1, n2, . . . , nk)



=

(
[nk+1 < nk]
[nk+1 = nk] , ¬Ωk(n1, n2, . . . , nk)

)
.

Lemma 3.3. For k ≥ 1,

¬Ωk+1(n1, n2, . . . , nk+1) =

(
[nk+1 > nk]
[nk+1 = nk] , Ωk(n1, n2, . . . , nk)

)
.

15



Proof. Using Lemma 3.2 and distributive laws, we have:

¬Ωk+1(n1, n2, . . . , nk+1) = ¬
(
[nk+1 < nk]
[nk+1 = nk] , ¬Ωk(n1, n2, . . . , nk)

)

=

(
¬[nk+1 < nk] ,

(
¬[nk+1 = nk]

Ωk(n1, n2, . . . , nk)

))

=

[nk+1 ≥ nk] ,

 [nk+1 < nk]
[nk+1 > nk]

Ωk(n1, n2, . . . , nk)



=

[nk+1 ≥ nk] , [nk+1 < nk]
[nk+1 ≥ nk] , [nk+1 > nk]
[nk+1 ≥ nk] , Ωk(n1, n2, . . . , nk)



=

[nk+1 > nk]
[nk+1 > nk] , Ωk(n1, n2, . . . , nk)
[nk+1 = nk] , Ωk(n1, n2, . . . , nk)



=

(
[nk+1 > nk]
[nk+1 = nk] , Ωk(n1, n2, . . . , nk)

)
.

Combining Lemmas 3.2 and 3.3, we can derive a second order recursive formula for Ωk:

Ωk+2(n1, n2, . . . , nk+2) =

(
[nk+2 < nk+1]
[nk+2 = nk+1] , ¬Ωk+1(n1, n2, . . . , nk+1)

)

=

[nk+2 < nk+1]

[nk+2 = nk+1] ,

(
[nk+1 > nk]
[nk+1 = nk] , Ωk(n1, n2, . . . , nk)

) 

=

[nk+2 < nk+1]
[nk+2 = nk+1] , [nk+1 > nk]
[nk+2 = nk+1] , [nk+1 = nk] , Ωk(n1, n2, . . . , nk)



=

 [nk+2 < nk+1]
[nk+2 = nk+1 > nk]
[nk+2 = nk+1 = nk] , Ωk(n1, n2, . . . , nk)

 (18)

Theorem 3.4. For k ≥ 1,
Ωk = Ek.

Proof. We induct on k, starting with the base cases. We have for any n1 ∈ N, Ω1(n1) = E1(n1) =
False by definition and it can be immediately shown that Ω2(n1, n2) = E2(n1, n2) = [n2 ≤ n1]

16



for any pair (n1, n2) ∈ N2. Now assume that for some k ≥ 1, Ωk = Ek. Then

Ωk+2(n1, n2, . . . , nk+2) =

 [nk+2 < nk+1]
[nk+2 = nk+1 > nk]
[nk+2 = nk+1 = nk] , Ωk(n1, n2, . . . , nk)



=

 [nk+2 < nk+1]
[nk+2 = nk+1 > nk]
[nk+2 = nk+1 = nk] , Ek(n1, n2, . . . , nk)



=



[nk+2 < nk+1]
[nk+2 = nk+1 > nk]

[nk+2 = nk+1 = nk] ,


[nk < nk−1]
[nk = nk−1 > nk−2]
[nk = nk−1 = nk−2 < nk−3]

.

..{
[nk = · · · = n2 > n1] if k is odd

[nk = · · · = n2 ≤ n1] if k is even





=



[nk+2 < nk+1]
[nk+2 = nk+1 > nk]
[nk+2 = nk+1 = nk < nk−1]
[nk+2 = nk+1 = nk = nk−1 > nk−2]
[nk+2 = nk+1 = nk = nk−1 = nk−2 < nk−3]

...{
[nk+2 = · · · = n2 > n1] if k is odd

[nk+2 = · · · = n2 ≤ n1] if k is even


= Ek+2(n1, n2, . . . , nk+2).

With this equivalence, we have shown that the recursive definition of the Grundy value and
the eeny-meeny rule agree.

4 Further generalisations

Colourful Nim is a generalisation of ordinary Nim – ordinary Nim is just the special case where
there are no colour changes. But what are some ways you could generalise further?

4.1 3-colour Nim?

What about instead of having two colours, you have three?

17



Unfortunately, this is no more interesting or difficult than having 2 colours like above. The
reason for this is that the colours don’t actually matter, only the colour changes. So the above
game is equivalent to the 2-colour game:

So to play 3-colour Nim, just translate it into 2-colour Nim and play with the E-M rule as
before.

4.2 Taking balls from both ends

What about if you can take balls from both ends of each pile?

18



This a bit more complicated. The general strategy would still stand, namely calculating
the Grundy value of each pile and then making the XOR equal to zero. But the problem once
again becomes how to efficiently calculate the Grundy value. We are still unsure of an efficient
procedure for doing this.

4.3 Sequences of impartial games in general

A one-pile colourful Nim game could also be seen as a sequence of one-pile Nim games, where
the loser of each sub-game goes first in the next-sub game.

But what if you make each game in the sequence more complicated? For example, you could
instead play a sequence of three multiple-pile Nim games:

19



This is also much more complicated. One thing that definitely won’t work is calculating the
Grundy value of each game in the sequence, and then considering the corresponding colourful
Nim game, like so:

It is a reasonable guess that you can just omit these zero games and “compress” the stack
before applying the rule, but this is not the case – consider the game (1, [2, 2]) where [2, 2]
denotes a game with two Nim piles of two stones each. Since [2, 2] has Grundy value 0 by the
XOR trick, this guess would say that the overall Grundy value is 1, and hence winnable for us.
But by trying to win this game yourself, you can see that this is impossible.

But it gets worse: in fact, the Grundy value of the overall game cannot be any function of
the Grundy values of each intermediate game. To see this, consider this game:(

[n
(1)
1 , n

(1)
2 , . . . , n

(1)
k1

], [n
(2)
1 , n

(2)
2 , . . . , n

(2)
k2

], . . . , [n
(ℓ)
1 , n

(ℓ)
2 , . . . , n

(ℓ)
kℓ
]
)
,

i.e., a sequence of ℓ games of Nim, at the top a kℓ-pile Nim game, followed by a kℓ−1-pile game,
and so on, until a k1-pile game. The Grundy value of this game cannot be a function of the

20



Grundy values of the intermediate games;

G
(
[n

(1)
1 , . . . , n

(1)
k1

], . . . , [n
(ℓ)
1 , . . . , n

(ℓ)
kℓ
]
)
̸= f

(
n
(1)
1 ⊕ · · · ⊕ n

(1)
k1

, . . . , n
(ℓ)
1 ⊕ · · · ⊕ n

(ℓ)
kℓ

)
for any f . If this were the case, (1, [1, 1]) and (1, [2, 2]) would have the same Grundy value, but
this can’t be the case since (1, [1, 1]) is a win for the first player, while (1, [2, 2]) is a loss. This
means, among other things, that it’s not possible to come up with a uniform strategy for all
sequences of impartial games just by considering the Grundy values of each impartial game in
the sequence, and converting it to a game of Nim.

Another reason to expect that it is much more complicated is because a general strategy for
playing sequences of games where you have the perfect strategies for the intermediate games
would give you a general technique for misère play of any impartial game. The misère version
of an impartial game is where you change the win condition so that whoever makes the last
move loses.

Misère play is surprisingly often much more complicated than normal play – here’s the
winning strategy for misère Nim, paraphrasing from On Numbers and Games, Conway [3]:

“Play as you would in normal Nim, making the XOR of the heap-sizes
zero, unless your move would leave only heaps of size one, (discounting
empty heaps). In this case, move so as to leave either one more or one
fewer one-heaps than the normal play move.”

If you had a general rule for playing sequences of impartial games, you could convert any
game into its misère variant by considering the that game followed by a game of Nim with
a single stone. A general procedure for converting perfect play at the normal version of an
impartial game to perfect play at the misère version would be remarkable, so it’s quite unlikely
the generalisation to sequences of impartial games is straightforward.

5 Conclusion

In this article, we have analysed Colourful Nim, a new variant of Nim. We have derived an
efficient procedure for determining its Sprague-Grundy values so that optimal play on any
position with total height N can be computed in O(N) time.

This project illustrates the tight coupling between computer search and human proof. An
exhaustive search for the Grundy values of this game first highlighted the nk or nk − 1 pattern
and then we converted this into a simple formula with a proof based on a nested induction on
n and k.

We have also considered further generalisations with partial results: we have shown that
any fixed number of colours reduces to the two-colour case and demonstrated that there is
much more complexity when you allow removing stones from both ends or stacking sequences
of impartial games in general.

Summary of work

• A complete, closed–form characterisation of the Grundy values of colourful Nim via the
eeny–meeny rule (2).

• A short proof of its correctness that may transfer to other impartial games (3.4).

• An interactive implementation for experimentation and teaching2.

2https://projects.ollybritton.com/games/colourful-nim

21

https://projects.ollybritton.com/games/colourful-nim


Potential for further work

• Two-ended play. Find an efficient formula for G when one may remove stones from
both ends.

• Sequences of impartial games. Find an efficient formula for G given a general sequence
of impartial games.

References

[1] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning Ways for Your
Mathematical Plays. Academic Press, 1982.

[2] Charles L. Bouton. Nim, a game with a complete mathematical theory. Annals of Mathe-
matics, 3(1/4):35–39, 1901.

[3] J.H. Conway. On Numbers and Games. Ak Peters Series. Taylor & Francis, 2000.

[4] Kevin C. Klement. Propositional logic. In Internet Encyclopedia of Philosophy. 2004.

[5] Gabriel Nivasch. Sprague-grundy theory. https://www.gabrielnivasch.org/fun/

combinatorial-games/sprague-grundy, November 2005. Migrated August 2021.

22

https://www.gabrielnivasch.org/fun/combinatorial-games/sprague-grundy
https://www.gabrielnivasch.org/fun/combinatorial-games/sprague-grundy

	Introduction
	Colourful Nim
	A winning strategy for multiple piles
	The eeny-meeny (E-M) rule
	Propositions

	Example calculations
	Winning (or losing)
	Example games

	Proof of correctness
	A warmup: true when k = 2
	A useful lemma
	A breather
	Full correctness for any k

	Further generalisations
	3-colour Nim?
	Taking balls from both ends
	Sequences of impartial games in general

	Conclusion

