Quantum Information HT24, Tensor products


Flashcards

Suppose

\[\vert \alpha\rangle = \begin{pmatrix}\alpha _ 0 \\\\ \vdots \\\\ \alpha _ {d _ A -1}\end{pmatrix}, \quad \vert \beta\rangle = \begin{pmatrix}\beta _ 0 \\\\ \vdots \\\\ \beta _ {d _ B -1}\end{pmatrix}\]

Then what is $ \vert \alpha\rangle \otimes \vert \beta\rangle$?


\[\vert \alpha\rangle \otimes \vert \beta\rangle := \left( \begin{array}{c} \alpha _ 0 \beta _ 0 \\\\ \vdots \\\\ \alpha _ 0 \beta _ {d _ B-1} \\\\ \vdots \\\\ \alpha _ {d _ A-1} \beta _ 0 \\\\ \vdots \\\\ \alpha _ {d _ A-1} \beta _ {d _ B-1} \end{array} \right)\]

Suppose $ \vert \Psi\rangle \in \mathcal H _ A \otimes \mathcal H _ B$ and that we are considering the computational basis

\[\\{ \vert m\rangle \otimes \vert n\rangle \mid m = 0, \ldots, d _ A - 1, \, n = 0, \ldots, d _ B - 1 \\}\]

How can you expand $ \vert \Psi\rangle$?


\[\vert \Psi\rangle = \sum _ {m=0}^{d _ A-1} \sum _ {n=0}^{d _ B-1} c _ {mn} \vert m\rangle \otimes \vert n\rangle\]

What is the product bra

\[\langle \alpha \vert \otimes \langle \beta \vert\]

equal to in terms of product kets?


\[( \vert \alpha \rangle \otimes \vert \beta \rangle)^\dagger\]

What is

\[(\langle \alpha \vert \otimes \langle \beta \vert ) ( \vert \alpha' \rangle \otimes \vert \beta' \rangle)\]

?


\[\langle \alpha \vert \alpha'\rangle \langle \beta \vert \beta'\rangle\]

What is

\[(A \otimes B)( \vert \alpha \rangle \otimes \vert \beta \rangle)\]

?


\[A \vert \alpha\rangle \otimes B \vert \beta\rangle\]

What is

\[(A \otimes B)(A' \otimes B')\]

?


\[AA' \otimes BB'\]

What is

\[\left( \langle\alpha \vert \otimes \langle\beta \vert \right) (A \otimes B) \left( \vert \alpha'\rangle \otimes \vert \beta'\rangle \right)\]

?


\[\langle\alpha \vert A \vert \alpha'\rangle \langle\beta \vert B \vert \beta'\rangle\]

What is

\[(A \otimes B)^\dagger\]

?


\[A^\dagger \otimes B^\dagger\]

Proofs




Related posts