Notes - Linear Algebra MT23, Orthogonal complements
Flashcards
How does having an inner product $\langle \cdot, \cdot \rangle$ induce a natural injective $\mathbb R$-linear map $\phi : V \to V’$?
Define the orthogonal complement $U^\perp$ of subspace $U \le V$?
Suppose $U \le V$. In the finite dimensional case, what can you say about $U \oplus U^\perp$?
What “dimension formula” do you get with regards to the orthogonal complement $U^\perp$ of a subspace $U \le V$ in the finite dimensional case?
For any subspace $U$, what is $U \cap U^\perp$?
How can you rewrite $(U + W)^\perp$?
How can you rewrite $U^\perp \cap W^\perp$?
What can you say about the relationship between $(U \cap W)^\perp$ and $U^\perp + W^\perp$?
with equality if $\dim V < \infty$.
What can you say about the relationship between $U$ and $(U^\perp)^\perp$?
with equality if $\dim V < \infty$.
Suppose $V$ is a finite dimensional inner product space. How can you link $U^\perp$ and $U^0$?
Under the natural isomorphism $\phi : V \to V’$ given by $v \mapsto \langle v, \cdot \rangle$, $U^\perp$ maps isomorphically to $U^0$.
Suppose:
- $V$ is a finite dimensional vector space over $\mathbb R$
- $\phi : V \to V’$ is the natural $\mathbb R$-linear isomorphism given by $v \mapsto \langle v, \cdot \rangle$
Quickly prove that then $U^\perp$ maps isomorphically to $U^0$.
We use the usual approach of showing one inclusion, checking injectivity, and then using dimensions to check surjectivity.
Suppose $v \in U^\perp$. Then for all $u \in U$:
\[\langle u, v \rangle = \overline{\langle v, u \rangle} = 0\]Hence $\langle v, \cdot \rangle \in U^0$. Then $\text{Im}(\phi \vert _ {U^\perp}) \subseteq U^0$.
Injective since $\phi(v) = 0$ implies $v = 0$ by non-degeneracy.
Surjective, since
\[\dim U^\perp = \dim V - \dim U = \dim U^0\]Quickly prove for $U, W \le V$:
- $U \cap U^\perp = \{0\}$
- $U \oplus U^\perp = V$ if $V$ is finite dimensional
- $(U + W)^\perp = U^\perp \cap W^\perp$
- $U^\perp + W^\perp \subseteq (U \cap W)^\perp$ with equality if $V$ is finite dimensional
- $U \subseteq (U^\perp)^\perp$ with equality if $V$ is finite dimensional
1. $U \cap U^\perp = \{0\}$:
If $u \in U$ and $u \in U^\perp$, then $\langle u, u \rangle = 0$. As $\langle \cdot, \cdot \rangle$ is positive definite, this implies $u = 0$.
2. $U \oplus U^\perp = V$:
Consider an orthonormal basis of $U$ given by $\{e _ 1, \cdots, e _ k\}$ and extend to a basis $\{e _ 1, \cdots, e _ n\}$ of $V$. Consider
\[v = \sum^n_{i = 1} \alpha_i e_i = \sum_{i = 1}^k \alpha_i e_i + \sum^n_{i>k} \alpha_i e_i\]Then $\sum _ {i = 1}^k \alpha _ i e _ i \in U$ and by taking $\langle e _ \ell, \sum^n _ {i > k} \alpha _ i e _ i\rangle$ for each $1 \le \ell \le k$, we see that $\sum^n _ {i > k} \alpha _ i e _ i \in U^\perp$. Then by part 1, $V = U \oplus U^\perp$.
3. $(U + W)^\perp = U^\perp \cap W^\perp$:
First suppose that $v \in U^\perp \cap W^\perp$. Then $\forall u \in U$ and $\forall w \in W$, \langle v, u \rangle = 0$ and $\langle v, w\rangle = 0$. So $\langle v, u + w \rangle = 0$. Now suppose $v \in (U+W)^\perp$. Then $\forall u, w \in U, W$, $\langle v, u + w\rangle = 0$. By taking $u$ or $w$ as $0$, $\langle v, u\rangle = 0$ and $\langle v, w\rangle = 0$.
4. $U^\perp + W^\perp \subseteq (U \cap W)^\perp$ with equality if $V$ is finite dimensional:
Suppose $v \in U^\perp + W^\perp$. Then $v = u + w$ where $u \in U^\perp$ and $v \in W^\perp$. Hence $\forall s \in U \cap W$, $\langle v, s\rangle = \langle u + w, s \rangle = \langle u, s \rangle + \langle w, s \rangle = 0$. Now suppose we are in finite dimensional case. Using the dimension formula applied to $U^\perp, W^\perp, (U^\perp \cap W^\perp), (U^\perp + W^\perp)$:
\[\begin{align*} \dim(U^\perp + W^\perp) &= \dim(U^\perp) + \dim(W^\perp) - \dim(U^\perp \cap W^\perp) \\\\ &= \dim(U^\perp) + \dim(W^\perp) - \dim((U \cap W)^\perp) \\\\ &= n - \dim(U) + n - \dim(W) - n + \dim(U \cap W) \\\\ &= n - (\dim(U) + \dim(W) - \dim(U \cap W)) \\\\ &= n - \dim(U \cup W) \\\\ &= \dim((U \cup W)^\perp) \end{align*}\](where $n = \dim V$).
5. $U \subseteq (U^\perp)^\perp$ with equality if $V$ is finite dimensional:
Let $u \in U$. Then $\forall w \in U^\perp$,
\[\langle u, w \rangle = \overline{\langle w, u\rangle} = 0\]hence $\langle w, u \rangle = 0$ and $u \in (U^\perp)^\perp$. If $V$ is finite dimensional, by part 2:
\[\dim((U^\perp)^\perp) = \dim V - \dim U^\perp = \dim U\]so $U = (U^\perp)^\perp$.