Notes - Metric Spaces MT23, Function spaces


Flashcards

Suppose $X$ is a metric space. Can you define $B(X)$?


\[B(X) = \\{f : f(X) \text{ is bounded}\\}\]

where each $f : X \to \mathbb R$.

Suppose $X$ is a metric space and that $f \in B(X)$. Can you define $ \vert \vert f \vert \vert \ _ \infty$?


\[\sup_{x \in X} |f(x)|\]

Suppose $X$ is a metric space. Can you define $C(X)$?


\[B(X) = \\{f : f \text{ is continuous}\\}\]

**where each $f : X \to \mathbb R$.

Suppose $X$ is a metric space. Can you define $C _ b(X)$?


\[C(X) \cap B(X)\]

where each $f : X \to \mathbb R$.

Proofs

Prove that if $X$ is a metric space, then $ \vert \vert f \vert \vert _ \infty$ defines a valid norm.


Todo.




Related posts