Computational Complexity HT25, Problem sheets
-
[[Problem Sheet - Computational Complexity HT25, I]]?
- Count is a computable function if the language is decidable
- Decidability has a witness characterisation like $\mathsf{NP}$
- Is $\mathsf{INTERSECT}$ or $\mathsf{FINITE}$ r.e.-complete?
- Is the language of all strings containing $2^n$ ones in $\mathsf{DTIME}$.
- $\mathsf{PAL}$ cannot be decided in time $o(n^2)$ on a 1-tape TM. ⭐️
- A language is regular iff $L \in \mathsf{DSPACE}(O(1))$ ⭐️
-
[[Problem Sheet - Computational Complexity HT25, II]]?
- If $\mathsf{DTIME}(T(n)) \subseteq \mathsf{DSPACE}(S(n))$, then $\mathsf{DTIME}(T(2^n)) \subseteq \mathsf{DSPACE}(S(2^n))$. ⭐️
- Show $\mathsf{DSPACE}(n) \ne \mathsf P$, does it follow $\mathsf{DSPACE}(n) \subsetneq P$? ⭐️
- Languages in $\mathsf{DSPACE}(s)$ can be recognised by a family of two-way deterministic finite automata with at most $2^{cs(n)}$ states ⭐️
- Every tally language in $\mathsf{NP}$ is in $\mathsf P$ iff $\mathsf{NE} = \mathsf{E}$. ⭐️
- Every language in $\mathsf{NTIME}(n^2)$ is decidable in $O(n^2)$ by a 3-tape non-deterministic Turing machine
- Show that the language of palindromes is not in $\mathsf{NTISP}(n^{1.1}, n^{0.1})$. ⭐️
-
[[Problem Sheet - Computational Complexity HT25, III]]?
- Show that $\mathsf{NSPACE}(n) \subsetneq \mathsf{NSPACE}(n^{1.1})$ using only results proved in lectures ⭐️
- Show that the language of pairs of DTMs and inputs where the DTM takes at most $ \vert x \vert ^2$ time is not in $\mathsf{DTIME}(n)$.
- Prove unconditionally that there is a language that is $\mathsf{NP}$-hard but not $\mathsf{NP}$-complete
- $\mathsf{CNF} _ 2 \in \mathsf P$, but $\mathsf{CNF} _ 3$ is $\mathsf{NP}$-complete
-
[[Problem Sheet - Computational Complexity HT25, IV]]?
- Show $\mathsf{QUADRATIC}\text{-}\mathsf{EQUATIONS}$ is $\mathsf{NP}$-hard
- Show that if $\mathsf P = \mathsf{NP}$, then there is a polynomial time algorithm which outputs a complete list of prime factors of $n$
- Prove $\Pi _ 2\text{-}\mathsf{SAT}$ is $\Pi^p _ 2$-complete
- Show $\mathsf{P}^\mathsf{NP} \subseteq \Sigma^p _ 2 \cap \Pi^p _ 2$.
- Show that $\mathsf P = \mathsf{NP}$, then $\Sigma^p _ {i} = \mathsf P$ for every $i$.
-
[[Problem Sheet - Computational Complexity HT25, V]]?
- $\mathsf{MAJORITY}$ has circuits of size $O(n\log n)$.
- There is a Boolean function with polynomial-size formulas but without a polynomial-size CNF
- For each integer $k$, there is a Boolean function computable by circuits of size $n^{k+2}$ but not by circuits of size $n^k$. ⭐️
- Show that $\mathsf P _ \mathsf{/poly}$ is precisely the class of languages recognisable by Turing machines with polynomially sized advice
- If there are a sequence of polynomial-size circuits that compute $\mathsf{SAT}$, then there is a sequence of polynomially size circuits that actually tell you the satisfying assignments
- If $\mathsf{NP}$ has polynomial size circuits, then $\Sigma^p _ 2 = \Pi^p _ 2$. ⭐️
-
[[Problem Sheet - Computational Complexity HT25, VI]]?
- Simulating a 50-50 coin with a biased coin
- Every problem $L \in\mathsf{RP}$ polynomial time $m$-reduces to Dense-Circuit-SAT.
- $\mathsf{ZPP} = \mathsf{RP} \cap \mathsf{coRP}$ ⭐️
- If $\mathsf{NP} \subseteq \mathsf{BPP}$, then $\mathsf{NP} = \mathsf{RP}$.
- $\mathsf{NP} \subseteq \mathsf{PP}$
- Weird question