Notes - Logic and Proof MT24, Boolean circuits


Flashcards

Can you @define a boolean circuit/straight-line program over a set of propositional variables $p _ 1, p _ 2, \ldots, p _ n$.


A finite sequence of definitions $\alpha _ 1 := E _ 1$, …, $\alpha _ m := E _ m$ where each $E _ i$ is an expression of the form:

  • $\mathbf{true}$
  • $\mathbf{false}$
  • $F \land G$
  • $F \lor G$
  • $\lnot F$

and where $F$ and $G$ are drawn from the set of input variables or preceding program variables $\alpha _ 1, \ldots, \alpha _ {i-1}$.

Can you @define what it means for a boolean circuit/straight-line program to be monotone?


It does not use negation.




Related posts