Computer Vision MT25, Convolutions


Flashcards

What notation convention is used for discrete functions $f : \mathbb Z \to \mathbb R$?


Function application is denoted $f[x]$, like you’re indexing an array.

Suppose:

  • $f : \mathbb Z \to \mathbb R$
  • $g : \mathbb Z \to \mathbb R$

@Define the convolution $f \ast g$, and state which of these is the kernel or filter, and which is the input function.


\[(f \ast g)[x] = \sum^\infty _ {u = -\infty} f[u] g[x - u]\]
  • $f$ is the kernel or filter
  • $g$ is the input function

Suppose:

  • $f : \mathbb Z \to \mathbb R$
  • $g : \mathbb Z \to \mathbb R$
  • $f$ has finite support in the set $\mathcal M = {0, \ldots, M - 1}$, i.e. for all $m \in \mathbb Z \setminus \mathcal M$, $f[m] = 0$, or equivalently $f : { 0, \ldots, M-1 } \to \mathbb R$

@Define the convolution $f \ast g$.


\[(f \ast g)[x] = \sum^{M-1} _ {u = 0} f[u] g[x - u + \frac{M-1}{2}]\]

(note that in particular, the order in which we look at the filter is right-to-left, this is to make it commutative).

Compute this @example convolution.


Suppose:

  • $g : \mathbb Z \times Z \to \mathbb R$
  • $f : {0, \ldots, M-1} \times {0, \ldots, N-1} \to \mathbb R$

@Define the convolution $f \ast g$.


\[(f \ast g)[x, y] = \sum^{M-1} _ {u = 0} \sum^{N-1} _ {v = 0} f[u, v] g[x - u + \frac{M-1}{2}, y - v + \frac{M-1}{2}]\]



Related posts