NLA MT25, Eigenvalue decomposition
Flashcards
@State a theorem that gives any symmetric matrix an eigenvalue decomposition.
Suppose $A \in \mathbb R^{n \times n}$ is a symmetric matrix. Then there is the decomposition
\[A = V \Lambda V^\top\]where:
- $V$ is orthogonal
- $V^\top V = I _ n = V V^\top$
- $\lambda = \text{diag}(\lambda _ 1, \ldots, \lambda _ n)$ is a diagonal matrix of eigenvalues
@Prove that every symmetric matrix has an eigenvalue decomposition, i.e. that if $A \in \mathbb R^{n \times n}$, then there is a decomposition
\[A = V \Lambda V^\top\]
where:
- $V$ is orthogonal
- $V^\top V = I _ n = V V^\top$
- $\lambda = \text{diag}(\lambda _ 1, \ldots, \lambda _ n)$
@todo.