NLA MT25, Subspaces


Flashcards

In what way does a matrix $V \in \mathbb R^{n \times d}$ represent a subspace $\mathcal S$?


The span of the columns.

@Prove that if:

  • $V _ 1 \in \mathbb R^{n \times d _ 1}$
  • $V _ 2 \in \mathbb R^{n \times d _ 2}$
  • $V _ 1, V _ 2$ both have linearly independent column vectors
  • $d _ 1 + d _ 2 > n$

then:

  • There is a nonzero intersection between the two subspaces $\mathcal S _ 1 = \text{span}(V _ 1)$ and $\mathcal S _ 2 = \text{span}(V _ 2)$.

Consider the matrix $M := [V _ 1, V _ 2]$, which is of size $n \times (d _ 1 + d _ 2)$. Since $d _ 1 + d _ 2 > n$, this matrix has a right null vector $c \ne 0$ such that $Mc = 0$. Then splitting $c = \begin{bmatrix}c _ 1 \ -c _ 2\end{bmatrix}$ gives the required result, since $V _ 1 c _ 1 = V _ 2 c _ 2$.




Related posts