NLA MT25, Weyl's inequality


Flashcards

@State Weyl’s inequality.


Suppose:

  • $A$ is a matrix
  • $E$ is another matrix (a pertubation)

Then:

  • For all $i$, $\sigma _ i(A + E) \in \sigma _ i (A) + [- \vert \vert E \vert \vert _ 2, \vert \vert E \vert \vert _ 2]]$
    • As a special case, $ \vert \vert A \vert \vert _ 2 - \vert \vert E \vert \vert _ 2 \le \vert \vert A + E \vert \vert _ 2 \le \vert \vert A \vert \vert _ 2 + \vert \vert E \vert \vert _ 2$
    • As a special case, For the eigenvalues of a symmetric matrix $A$, for all $i$, $\lambda _ i (A + E) \in \lambda _ i (A) + [- \vert \vert E \vert \vert _ 2, \vert \vert E \vert \vert _ 2]$

@Prove ∆weyls-inequality, i.e. that if

  • $A$ is a matrix
  • $E$ is another matrix (a pertubation)

then:

  • For all $i$, $\sigma _ i(A + E) \in \sigma _ i (A) + [- \vert \vert E \vert \vert _ 2, \vert \vert E \vert \vert _ 2]]$
    • As a special case, $ \vert \vert A \vert \vert _ 2 - \vert \vert E \vert \vert _ 2 \le \vert \vert A + E \vert \vert _ 2 \le \vert \vert A \vert \vert _ 2 + \vert \vert E \vert \vert _ 2$
    • As a special case, For the eigenvalues of a symmetric matrix $A$, for all $i$, $\lambda _ i (A + E) \in \lambda _ i (A) + [- \vert \vert E \vert \vert _ 2, \vert \vert E \vert \vert _ 2]$

@todo




Related posts