Notes - Analysis II HT23, Binomial theorem
Flashcards
Can you state the real binomial theorem, about
\[(1 + x)^p\]
?
Let $p \in \mathbb R$. Then for all $ \vert x \vert < 1$
\[(1 + x)^p = \sum_{k=0}^\infty {p \choose k} x^k\]The real binomial theorem states that for all $p \in \mathbb R$, and for all $ \vert x \vert < 1$,
\[(1 + x)^p = \sum_{k=0}^\infty {p \choose k} x^k\]
What definition of $p \choose k$ is used here?
Quickly prove that
\[{p \choose k} = \frac{p}{k} {p-1\choose k-1} = \frac{p-k+1}{k} {p\choose k-1}\]
and that
\[{p \choose k} + {p \choose k-1} = {p+1 \choose k}\]
First one is immediate from taking out a factor of $\frac p k$. Then
\[\begin{aligned} {p \choose k} + {p \choose k-1} &= \frac{p-k+1}{k} {p \choose k-1} + {p \choose k-1} \\\\ &= \frac{p+1}{k} {p \choose k-1} \\\\ &= {p+1 \choose k} \end{aligned}\]When proving the real binomial theorem, i.e. that
If $p \in \mathbb R$ then for all $ \vert x \vert < 1$
\[(1 + x)^p = \sum _ {k=0}^\infty {p \choose k} x^k\]
what two lemmas do you use about
\[{p \choose k}\]
that are useful in the proof?
If $p \in \mathbb R$ then for all $ \vert x \vert < 1$
and
\[{p \choose k} + {p \choose k-1} = {p+1 \choose k}\]When proving the real binomial theorem, i.e. that
If $p \in \mathbb R$ then for all $ \vert x \vert < 1$
\[(1 + x)^p = \sum _ {k=0}^\infty {p \choose k} x^k\]
You have two seperate functions
\[(1 + x)^p\]
and
\[\sum_{k=0}^\infty {p \choose k} x^k\]
What relationship do you want to show true about both of them in terms of their derivatives, that you can exploit later?
If $p \in \mathbb R$ then for all $ \vert x \vert < 1$
When proving the real binomial theorem, i.e. that
If $p \in \mathbb R$ then for all $ \vert x \vert < 1$
\[(1 + x)^p = \sum _ {k=0}^\infty {p \choose k} x^k\]
One of the steps is to justify that
\[g(x) = \sum_{k=0}^\infty {p \choose k} x^k\]
satisfies
\[(1+x)g'(x) = pg(x)\]
Using the fact that
\[{p \choose k} = \frac{p - k+1}{k}{p \choose k-1}\]
can you justify this?
If $p \in \mathbb R$ then for all $ \vert x \vert < 1$
Proofs
Prove the real binomial theorem:
Let $p \in \mathbb R$. Then for all $ \vert x \vert < 1$,
\[(1+x)^p = \sum^\infty _ {k=0} {p \choose k} x^k\]
Let $p \in \mathbb R$. Then for all $ \vert x \vert < 1$,
Todo.