Notes - Analysis I MT22, Integral test


Flashcards

Can you state the integral test in full?


Let $f : [1, \infty)$ be a function. Assume that

  • $f$ is non-negative
  • $f$ is decreasing
  • $\int^{k+1} _ {k} f(x) \text{d}x$ exists for $k \ge 1$.

Let $s _ n = \sum _ {k=1}^n f(k)$ and $I _ n = \int^n _ {1}f(x)\text{d}x$. Then:

  1. Let $\sigma _ n = s _ n - I _ n$. Then $(\sigma _ n)$ converges, and $0 \le \lim{n\to\infty} \sigma _ n \le f(1)$.
  2. $(s _ n)$ converges if and only if $(I _ n)$ converges.

When proving the integral test,

  • $f$ is non-negative
  • $f$ is decreasing
  • $\int^{k+1} _ {k} f(x) \text{d}x$ exists for $k \ge 1$.

Let $s _ n = \sum _ {k=1}^n f(k)$ and $I _ n = \int^n _ {1}f(x)\text{d}x$. Then:

  1. Let $\sigma _ n = s _ n - I _ n$. Then $(\sigma _ n)$ converges, and $0 \le \lim _ {n\to\infty} \sigma _ n \le f(1)$.
  2. $(s _ n)$ converges if and only if $(I _ n)$ converges.

what’s the strategy for showing $(\sigma _ n)$ converges?


Show it is decreasing and bounded below.

What’s a quick proof that if

\[f(k+1) \le f(x) \le f(k)\]

then

\[f(k+1) \le \int^{k+1}_k f(x) \text d x \le f(k)\]

?


\[\begin{aligned} f(k+1) &= \int_k^{k+1} f(k+1) \text dx \\\\ &\le \int_k^{k+1} f(x) \text dx \\\\ &\le \int_k^{k+1} f(k) \text dx \\\\ &= f(k) \end{aligned}\]

Proofs

The integral test states that when

  • $f$ is non-negative
  • $f$ is decreasing
  • $\int^{k+1} _ {k} f(x) \text{d}x$ exists for $k \ge 1$.

Let $s _ n = \sum _ {k=1}^n f(k)$ and $I _ n = \int^n _ {1}f(x)\text{d}x$. Then:

  1. Let $\sigma _ n = s _ n - I _ n$. Then $(\sigma _ n)$ converges, and $0 \le \lim _ {n\to\infty} \sigma _ n \le f(1)$.
  2. $(s _ n)$ converges if and only if $(I _ n)$ converges.

Prove (1).


Todo.

The integral test states that when

  • $f$ is non-negative
  • $f$ is decreasing
  • $\int^{k+1} _ {k} f(x) \text{d}x$ exists for $k \ge 1$.

Let $s _ n = \sum _ {k=1}^n f(k)$ and $I _ n = \int^n _ {1}f(x)\text{d}x$. Then:

  1. Let $\sigma _ n = s _ n - I _ n$. Then $(\sigma _ n)$ converges, and $0 \le \lim _ {n\to\infty} \sigma _ n \le f(1)$.
  2. $(s _ n)$ converges if and only if $(I _ n)$ converges.

Prove (2) using (1).


Todo.




Related posts