Notes - Linear Algebra I MT22, Cauchy-Schwarz Inequality


Flashcards

Can you state the Cauchy-Schwarz Inequality in full?


For $v, w$ in an inner product space $V$, then

\[|\langle v, w\rangle| \le ||v|| \text{ } ||w||\]

The Cauchy-Schwarz inequality states

For $v, w$ in an inner product space $V$, then $ \vert \langle v, w\rangle \vert \le \vert \vert v \vert \vert \text{ } \vert \vert w \vert \vert $.

When does equality hold?


When $v, w$ are linearly dependent, i.e. $v + t _ 0 w = 0$.

In the proof of the Cauchy-Schwarz inequality

For $v, w$ in an inner product space $V$, then $ \vert \langle v, w\rangle \vert \le \vert \vert v \vert \vert \text{ } \vert \vert w \vert \vert $.

Why can you assume $w \ne 0$?


Because if $w = 0$ then the result is immediate.

In the proof of the Cauchy-Schwarz inequality

For $v, w$ in an inner product space $V$, then $ \vert \langle v, w\rangle \vert \le \vert \vert v \vert \vert \text{ } \vert \vert w \vert \vert $.

What statement do you start with that the whole proof follows from?


\[0 \le ||v+tw||^2\]

In the proof of the Cauchy-Schwarz inequality

For $v, w$ in an inner product space $V$, then $ \vert \langle v, w\rangle \vert \le \vert \vert v \vert \vert \text{ } \vert \vert w \vert \vert $.

You get to a stage where you have

\[0 \le \langle v,w \rangle + 2t\langle v,w \rangle + t^2\langle w,w \rangle\]

What do you do next?


Use the fact the discriminant $b^2 - 4ac \le 0$.

In the proof of the Cauchy-Schwarz inequality

For $v, w$ in an inner product space $V$, then $ \vert \langle v, w\rangle \vert \le \vert \vert v \vert \vert \text{ } \vert \vert w \vert \vert $.

You get to a stage where you have

\[\begin{aligned} 0 &\le ||v+tw||^2 \\\\ &=\langle v,w \rangle + 2t\langle v,w \rangle + t^2\langle w,w \rangle \end{aligned}\]

If $v = w$, why are $v,w$ linearly dependent?


Because the discriminat is zero so there exists a root $t = t _ 0$ and so $ \vert \vert v + t _ 0 w \vert \vert = 0$.




Related posts