Probability MT22, Chebyshev's inequality


Flashcards

What does Chebyshev’s inequality state about a r.v. $Z$ with finite variance?


\[\forall c>0, \text{ } \mathbb{P}( \vert Z - \mathbb{E}[Z] \vert \ge c) \le \frac{\text{Var}(Z)}{c^2}\]

@Prove Chebyshev’s inequality:

Let $X$ be a random variable. Then, for all $t > 0$, $\mathbb{P}( \vert X-\mu \vert \ge t) \le \frac{\sigma^2}{t^2}$.


@todo?

@important~




Related posts