Galois Theory HT25, Groups
Flashcards
Signs of permutations
@Define the sign of a permutation $\sigma \in S _ n$.
\[\begin{aligned}
\text{sgn} &: S_n \to \pm 1 \\\\
\sigma &\mapsto \begin{cases}
1 &\text{if } \sigma \in A_n \\\\
-1 &\text{if } \sigma \notin A_n
\end{cases}
\end{aligned}\]
Properties of cyclic groups
@State a useful characterisation of cyclic groups which is useful for:
- Determining the number of intermediate subfields when the Galois group of a field extension is cyclic
- Showing groups (e.g. the multiplicative group of a finite field) is cyclic
A finite abelian group $G$ is cyclic iff there is one subgroup for each divisor of $ \vert G \vert $.
@State the automorphisms of $\mathbb Z / n \mathbb Z$.
\[\text{Aut}(\mathbb Z / n \mathbb Z) \cong (\mathbb Z / n \mathbb Z)^\times\]
Transitive subgroups of $S _ n$
What are the transitive subgroups of $S _ 3$?
- $S _ 3$ (order 6)
- $C _ 3$ (order 3)
What are the transitive subgroups of $S _ 4$?
- $S _ 4$ (order 24)
- $A _ 4$ (order 12)
- $D _ 8$ (order 8)
- $V _ 4$ (order 4)
- $C _ 4$ (order 4)
What are the transitive subgroups of $S _ 5$?
- $S _ 5$ (order 120)
- $A _ 5$ (order 60)
- $F _ {20} = \mathbb Z/5\mathbb Z \rtimes (\mathbb Z/5\mathbb Z)^\times$ (order 20)
- $D _ {10}$ (order 10)
- $C _ 5$ (order 5)