NLA MT25, Marchenko-Pastur theorem
Flashcards
@State the Marchenko-Pastur theorem.
Suppose:
- $X \in \mathbb R^{m \times n}$ is a random matrix
- $X _ {ij}$ are i.i.d. with mean 0 and variance 1
Then the singular values of $X$ follow the Marchenko-Pastur distribution with density
\[\sigma \sim \frac 1 x \sqrt{((\sqrt m + \sqrt n) - x)(x - (\sqrt m - \sqrt n))}\]and support $[\sqrt m - \sqrt n, \sqrt m + \sqrt n]$.