NLA MT25, Useful miscellany
Flashcards
What is
\[\begin{bmatrix}
I _ m & X \\ 0 & I _ n
\end{bmatrix}^{-1}\]
?
\[\begin{bmatrix}
I _ m & -X \\ 0 & I _ n
\end{bmatrix}\]
Suppose that $
X
< 1$ in a subordinate norm. How can you rewrite $(I - X)^{-1}$?
\[(I - X)^{-1} = I + X + X^2 + X^3 + \cdots\]