Analysis I MT22, Algebra of limits


Flashcards

What are the two ingredients to proving that if $a _ n \to a$ and $b _ n \to b$ then $\frac{a _ n}{b _ n} \to \frac{a}{b}$?


  • Proving the product law for limits, $a _ n b _ n \to a b$
  • Proving the reciprocal law for limits, $\frac{1}{b _ n} \to b _ n$.

When proving the reciprocal law for limits, i.e. that $\frac{1}{b _ n} \to \frac{1}{b}$, what two values of epsilon do you take, to show that $ \vert b _ n - b \vert $ can be less than?


  • $\frac{ \vert b \vert }{2}$
  • $\frac{ \vert b \vert ^2}{2}\epsilon$

When proving the reciprocal law for limits, i.e. that $\frac{1}{b _ n} \to \frac{1}{b}$, what do you rearrange $\left \vert \frac{1}{b _ n} - \frac{1}{b}\right \vert $ into?


\[\begin{aligned} \left|\frac{1}{b_n} - \frac{1}{b}\right| &= \left| \frac{b-b_n}{b b_n} \right| \\\\ &= \frac{1}{|b||b_n|} |b - b_n| \end{aligned}\]

When proving the reciprocal law for limits, i.e. that $\frac{1}{b _ n} \to \frac{1}{b}$, one of the aims is to show that $\frac{1}{ \vert b _ n \vert } < \frac{2}{ \vert b \vert }$. You know that $ \vert b _ n - b \vert < \frac{ \vert b \vert }{2}$, from the definition of convergence of $b _ n$. Starting from $ \vert b \vert $, how do you use this to show $\frac{1}{ \vert b _ n \vert } < \frac{2}{ \vert b \vert }$?


\[\begin{aligned} |b| &= |b - b_n + b_n| \\\\ &\le |b - b_n| + |b_n| \\\\ &< \frac{|b|}{2} + |b_n| \end{aligned}\]

which then implies $\frac{ \vert b \vert }{2} < \vert b _ n \vert $ and then taking reciprocals gives the required result.

When proving the product law for limits, i.e. that $a _ n b _ n \to ab$, what magic do you to $ \vert a _ n b _ n - ab \vert $ in order to get it into “a form you control”?


\[\begin{aligned} |a_nb_n - ab | &= |a_n b_n - ab_n + ab_n - ab| \\\\ &\le |a_nb_n - ab_n| + |ab_n - ab| \\\\ &= |a_n - a||b_n| + |a||b_n - b| \end{aligned}\]

When proving the product law for limits, i.e. that $a _ n b _ n \to ab$, what important theorem do you make use of?


Any convergent series is bounded.




Related posts