Notes - Analysis I MT22, Misc


Flashcards

What does it mean if $A$ and $B$ are both ordered fields and $A$ is dense in $B$?


For any $x, y \in B$, there exists $a \in A$ such that $x < a < y$.

What does a possible winding bijection from $\mathbb{Q} \to \mathbb{N}$ look like?


What’s a very quick, fun and bite-sized proof the harmonic series diverges?


Assume it has a limit $S$

\[\begin{aligned} S &= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \ldots \\\\ &= \left(\frac{1}{1} + \frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6}\right) + \left(\frac{1}{7} + \frac{1}{8}\right) + \ldots \\\\ &< \left(\frac{1}{2} + \frac{1}{2}\right) + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{6} + \frac{1}{6}\right) + \left(\frac{1}{8} + \frac{1}{8}\right) + \ldots \\\\ &= \left(\frac{1}{1}\right) + \left(\frac{1}{2}\right) + \left(\frac{1}{3}\right) + \left(\frac{1}{4}\right) + \ldots \\\\ &= S \end{aligned}\]

then $S < S$, a contradiction.

What’s the $\varepsilon$-neighbourhood of a point $a$?


The interval $(a - \epsilon, a + \epsilon)$.

What does the Continuum hypothesis state?


There is no set $S$ such that

\[|\mathbb{N}| < |S| < |\mathbb{R}|\]

Why is it very hard to prove the continuum hypothesis, that there is no set $S$ such that $ \vert \mathbb{N} \vert < \vert S \vert < \vert \mathbb{R} \vert $?


Because it’s unprovable in ZFC.

How do you rearrange $ \vert a _ n^{\frac 1 3} - L^{\frac 1 3} \vert $ in order to prove that if $a _ n \to L$ then $a _ n^{\frac 1 3} \to L^{\frac 1 3}$?


\[|a_n^{\frac 1 3} - L^{\frac 1 3}|=\frac{|a_n - L|}{|a_n^{\frac 2 3} + (La_n)^{\frac 1 3} + L^{\frac 2 3}|}\]



Related posts