Notes - Analysis I MT22, Triangle inequality


Triangle inequality

When proving the triangle inequality for the reals, i.e.

If $x, y \in \mathbb{R}$ then $ \vert x+y \vert \le \vert x \vert + \vert y \vert $.

What two ingredients do you start with?


  • $- \vert x \vert \le x \le \vert x \vert $
  • $- \vert y \vert \le y \le \vert y \vert $

Reverse triangle inequality

Can you state the reverse triangle inequality for the reals?


\[\big||x| - |y|\big| \le |x-y|\]

The reverse triangle inequality states

If $x, y \in \mathbb{R}$ then $\big \vert \vert x \vert - \vert y \vert \big \vert \le \vert x - y \vert $.

What two inequalities do you break this down into?


  • $- \vert x-y \vert \le \vert x \vert - \vert y \vert $
  • $ \vert x \vert - \vert y \vert \le \vert x-y \vert $

What’s the general strategy for proving things like

  • $- \vert x-y \vert \le \vert x \vert - \vert y \vert $, or
  • $ \vert x \vert - \vert y \vert \le \vert x-y \vert $ that look roughly like the triangle inequality?

Make substitutions for $a, b$ in $ \vert a + b \vert \le \vert a \vert + \vert b \vert $




Related posts