Notes - Analysis III TT23, Cauchy principal value


Flashcards

Explain why the improper integral

\[\int^1_{-1} \frac 1 x \text{ d}x\]

is undefined, but

\[\text{PV }\int^1_{-1} \frac 1 x \text{ d}x\]

is.


This is equivalent to the limit

\[\lim_{\varepsilon' \to 0, \varepsilon \to 0} \log \frac{\varepsilon'}{\varepsilon}\]

If both $\varepsilon$ are the same, then the limit exists, otherwise it doesn’t.




Related posts