Further Maths - Integrating and Differentiating Inverse Trig Functions


See Also

Flashcards

\[\frac{d}{dx}(\sin^{-1}(x))\]

What is this equal to?


\[\frac{1}{\sqrt{1 - x^2}}\]
\[\frac{d}{dx}(\cos^{-1}(x))\]

What is this equal to?


\[-\frac{1}{\sqrt{1 - x^2}}\]
\[\frac{d}{dx}(\tan^{-1}(x))\]

What is this equal to?


\[\frac{1}{1 + x^2}\]
\[\int \frac{1}{\sqrt{1-x^2}} dx\]

What is this equal to?


\[\sin^{-1}(x) + c\]
\[\int -\frac{1}{\sqrt{1-x^2}} dx\]

What is this equal to?


\[\cos^{-1}(x) + c\]
\[\int \frac{1}{1 + x^2}dx\]

What is this equal to?


\[\tan^{-1}(x) + c\]
\[\int \frac{1}{\sqrt{a^2-x^2}} dx\]

What is this equal to?


\[\sin^{-1}\left(\frac{x}{a}\right) + c\]
\[\int \frac{1}{a^2 + x^2}dx\]

What is this equal to?


\[\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right) + c\]



Related posts