Further Maths - Dot Product


2021-01-14

What is the word explanation for the scalar/dot produt of two vectors?


The sum of the products of the components.

What’s the notation for the dot product of $\pmb{a}$ and $\pmb{b}$?


\[\pmb{a} \cdot \pmb{b}\]

What’s the sum formula for $\pmb{a} \cdot \pmb{b}$?


\[\sum \pmb{a}_i \pmb{b}_i\]
\[\left(\begin{matrix} 2 \\ 2 \\ 2 \end{matrix}\right) \cdot \left(\begin{matrix} 1 \\ 2 \\ 3 \end{matrix}\right)\]

What is the dot product of the two vectors?


\[12\]

What is $\hat{i} \cdot \hat{i}$?


\[1\]

What is $\hat{j} \cdot \hat{j}$?


\[1\]

Does the dot product give a vector or scalar answer?


Scalar.

What does it mean if the dot product of two vectors is zero?


The two vectors are perpindicular.

\[\pmb{a} \cdot \pmb{b} = 0\]

What is true about $\pmb{a}$ and $\pmb{b}$?


They are perpindicular.

What’s the intuition behind the dot product?


The closer it is to zero, the more different the vectors are.

What is the $\cos$ formula for the dot product of $\pmb{a}$ and $\pmb{b}$?


\[\pmb{a} \cdot \pmb{b} = |\pmb{a}| \times |\pmb{b}| \times \cos\theta\]
\[\pmb{a} \cdot \pmb{b} = \vert \pmb{a} \vert \times \vert \pmb{b} \vert \times \cos\theta\]

What does $\theta$ represent here?


The angle between two vectors $\pmb{a}$ and $\pmb{b}$.

\[\pmb{a} \cdot \pmb{b} = \vert \pmb{a} \vert \times \vert \pmb{b} \vert \times \cos\theta\]

What does $ \vert \pmb{a} \vert $ represent here?


The length of vector $\pmb{a}$

\[\pmb{a} \cdot \pmb{b} = \vert \pmb{a} \vert \times \vert \pmb{b} \vert \times \cos\theta\]

Can you make $\cos$ the subject of the formula?


\[\cos\theta = \frac{\pmb{a} \cdot \pmb{b}}{|\pmb{a}||\pmb{b}|}\]
\[\pmb{a} \cdot \pmb{b} = \vert \pmb{a} \vert \times \vert \pmb{b} \vert \times \cos\theta\]

Why must a value of $0$ mean the two vectors are perpindicular?


Because $\cos(90^{\circ}) = 0$.

\[\cos\theta = \frac{\pmb{a} \cdot \pmb{b}}{ \vert \pmb{a} \vert \vert \pmb{b} \vert }\]

What do the two inverses of $\cos$ mean?


  • One inverse is the actute angle
  • One inverse is the obtuse angle

PHOTO DOT PRODUCT ANGLE What’s the formula for $\cos\theta$?


\[\cos\theta = \frac{\pmb{a} \cdot \pmb{b}}{|\pmb{a}||\pmb{b}|}\]



Related posts