Quantum Information HT24, Bell basis


Flashcards

Define the elements of the Bell basis.


\[\begin{aligned} |\Phi^+\rangle = \frac{|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle}{\sqrt 2} \\\\ |\Phi^-\rangle = \frac{|0\rangle \otimes |0\rangle - |1\rangle \otimes |1\rangle}{\sqrt 2} \\\\ |\Psi^+\rangle = \frac{|0\rangle \otimes |1\rangle + |1\rangle \otimes |0\rangle}{\sqrt 2} \\\\ |\Psi^-\rangle = \frac{|0\rangle \otimes |1\rangle - |1\rangle \otimes |0\rangle}{\sqrt 2} \end{aligned}\]

Can you define the singlet state $ \vert \Psi^{-}\rangle$ and describe its special behaviour around measurements?


\[|\Psi^{-}\rangle = \frac{|0\rangle \otimes |1\rangle - |1\rangle \otimes |0\rangle}{\sqrt 2}\]

If Alice and Bob perform measurements on the same basis, they will always obtain opposite outcomes, i.e.

\[p(0, 1) = p(1, 0) = \frac 1 2\] \[p(0, 0) = p(1, 1) = 0\]

How can you relate the Bell basis $\{ \vert \Phi^+\rangle, \vert \Phi^-\rangle, \vert \Psi^+\rangle, \vert \Psi^-\rangle\}$ to the Pauli matrices, and state where this relationship is useful?


Let $U = [I, X, Y, Z]$. Then

\[|\Phi_m\rangle = (U_m \otimes I) |\Phi^+\rangle\]

where we index the Bell basis as

\[\\{|\Phi^+\rangle, |\Psi^+\rangle, |\Psi^-\rangle, |\Phi^-\rangle\\} = \\{|\Phi_0\rangle, |\Phi_1\rangle, |\Phi_2\rangle, |\Phi_3\rangle\\}\]

This is useful for quantum teleportation.

Proofs




Related posts