Course - Linear Algebra MT23
Part A course that continues on from the Prelim courses [[Course - Linear Algebra I MT22]]U and [[Course - Linear Algebra II HT23]]U. Introduces the minimal polynomial, the primary decomposition theorem, Jordan normal form, dual spaces, adjoints, and complex inner product spaces.
- Course Webpage
- Lecture Notes
- Previous linear algebra courses:
- Other courses this term: [[Courses MT23]]U
Problem Sheets
Notes
- [[Notes - Linear Algebra MT23, Adjoints]]U
- [[Notes - Linear Algebra MT23, Annihilators]]U
- [[Notes - Linear Algebra MT23, Cayley-Hamilton theorem]]U
- [[Notes - Linear Algebra MT23, Dual spaces]]U
- [[Notes - Linear Algebra MT23, Fields]]U
- [[Notes - Linear Algebra MT23, Homomorphisms]]U
- [[Notes - Linear Algebra MT23, Inner product spaces]]U
- [[Notes - Linear Algebra MT23, Integral domains]]U
- [[Notes - Linear Algebra MT23, Invariant subspaces]]U
- [[Notes - Linear Algebra MT23, Jordan normal form]]U
- [[Notes - Linear Algebra MT23, Minimal and characteristic polynomials]]U
- [[Notes - Linear Algebra MT23, Misc]]U
- [[Notes - Linear Algebra MT23, Orthogonal complements]]U
- [[Notes - Linear Algebra MT23, Orthogonal sets]]U
- [[Notes - Linear Algebra MT23, Orthogonal, unitary and normal transformations]]U
- [[Notes - Linear Algebra MT23, Primary decomposition theorem]]U
- [[Notes - Linear Algebra MT23, Quotient spaces]]U
- [[Notes - Linear Algebra MT23, Rank-nullity theorem]]U
- [[Notes - Linear Algebra MT23, Rings]]U
- [[Notes - Linear Algebra MT23, Triangular form theorem]]U
Lectures
- [[Lecture - Linear Algebra MT23, I]]U
- [[Lecture - Linear Algebra MT23, II]]U
- [[Lecture - Linear Algebra MT23, III]]U
- [[Lecture - Linear Algebra MT23, IV]]U
- [[Lecture - Linear Algebra MT23, V]]U
- [[Lecture - Linear Algebra MT23, VI]]U
- [[Lecture - Linear Algebra MT23, VII]]U
- [[Lecture - Linear Algebra MT23, VIII]]U
- [[Lecture - Linear Algebra MT23, IX]]U
- [[Lecture - Linear Algebra MT23, X]]U
- [[Lecture - Linear Algebra MT23, XI]]U
- [[Lecture - Linear Algebra MT23, XII]]U
- [[Lecture - Linear Algebra MT23, XIII]]U
- [[Lecture - Linear Algebra MT23, XIV]]U
- [[Lecture - Linear Algebra MT23, XV]]U
- [[Lecture - Linear Algebra MT23, XVI]]U