Notes - Logic MT24, Example proofs in first-order logic


Flashcards

Suppose:

  • $\mathcal L$ is a first-order language
  • $\phi \in \text{Form}(\mathcal L)$
  • $\text{Free}(\phi) = \{x _ i\}$
  • $\phi[x _ j / x _ i]$ is defined

Give a proof in $K(\mathcal L)$ that then:

\[\\{\forall x_i \phi\\} \vdash \forall x_j \phi[x_j / x_i]\]

  1. Hyp: $\forall x _ i \phi$
  2. A4: $(\forall x _ i \phi \to \phi[x _ j / x _ i])$
  3. MP1,2: $\phi[x _ j/x _ i]$
  4. Gen: $\forall x _ j \phi[x _ j /x _ i]$

@example~

Suppose:

  • $\mathcal L$ is a first-order language
  • $\tau \in \text{Sent}(\mathcal L)$
  • $\phi \in \text{Form}(\mathcal L)$
  • $\text{Free}(\psi) \subseteq \{i\}$

Give a proof in $K(\mathcal L)$ that then:

\[\vdash ( \forall x_i (\psi \to \tau) \to (\exists x_i \psi \to \tau) )\]

Note that $\forall x _ i (\psi \to \tau)$ is a sentence. We show

\[\\{ \forall x_i (\psi \to \tau) \\} \vdash (\exists x_i \psi \to \tau)\]
  1. Hyp: $\forall x _ i (\psi \to \tau)$
  2. A4: $\forall x _ i (\psi \to \tau) \to (\psi \to \tau)$
  3. MP1,2: $(\psi \to \tau)$
  4. Taut: $((\psi \to \tau) \to (\lnot \tau \to \lnot \psi))$
  5. MP3,4: $(\lnot \tau \to \lnot \psi)$
  6. Gen5: $\forall x _ i (\lnot \tau \to \lnot \psi)$
  7. A5: $(\forall x _ i (\lnot \tau \to \lnot \psi) \to (\lnot \tau \to \forall x _ i \lnot \psi))$
  8. MP6,7: $(\lnot \tau \to \forall x _ i \lnot \psi)$
  9. Taut: $((\lnot \tau \to \forall x _ i \lnot \psi) \to (\lnot \forall x _ i \lnot \psi \to \tau))$
  10. MP8,9: $(\lnot \forall x _ i \lnot \psi \to \tau)$
  11. Def. $\exists$: $(\exists x _ i \psi \to \tau)$

where in (7), $x _ i \notin \text{Free}(\lnot \tau)$ because $\tau$ is a sentence, so the conditions for A5 are met.

@example~




Related posts