Notes - Logic MT24, Example proofs in first-order logic
Flashcards
Suppose:
- $\mathcal L$ is a first-order language
- $\phi \in \text{Form}(\mathcal L)$
- $\text{Free}(\phi) = \{x _ i\}$
- $\phi[x _ j / x _ i]$ is defined
Give a proof in $K(\mathcal L)$ that then:
\[\\{\forall x_i \phi\\} \vdash \forall x_j \phi[x_j / x_i]\]
- Hyp: $\forall x _ i \phi$
- A4: $(\forall x _ i \phi \to \phi[x _ j / x _ i])$
- MP1,2: $\phi[x _ j/x _ i]$
- Gen: $\forall x _ j \phi[x _ j /x _ i]$
@example~
Suppose:
- $\mathcal L$ is a first-order language
- $\tau \in \text{Sent}(\mathcal L)$
- $\phi \in \text{Form}(\mathcal L)$
- $\text{Free}(\psi) \subseteq \{i\}$
Give a proof in $K(\mathcal L)$ that then:
\[\vdash (
\forall x_i (\psi \to \tau)
\to
(\exists x_i \psi \to \tau)
)\]
Note that $\forall x _ i (\psi \to \tau)$ is a sentence. We show
\[\\{ \forall x_i (\psi \to \tau) \\} \vdash (\exists x_i \psi \to \tau)\]- Hyp: $\forall x _ i (\psi \to \tau)$
- A4: $\forall x _ i (\psi \to \tau) \to (\psi \to \tau)$
- MP1,2: $(\psi \to \tau)$
- Taut: $((\psi \to \tau) \to (\lnot \tau \to \lnot \psi))$
- MP3,4: $(\lnot \tau \to \lnot \psi)$
- Gen5: $\forall x _ i (\lnot \tau \to \lnot \psi)$
- A5: $(\forall x _ i (\lnot \tau \to \lnot \psi) \to (\lnot \tau \to \forall x _ i \lnot \psi))$
- MP6,7: $(\lnot \tau \to \forall x _ i \lnot \psi)$
- Taut: $((\lnot \tau \to \forall x _ i \lnot \psi) \to (\lnot \forall x _ i \lnot \psi \to \tau))$
- MP8,9: $(\lnot \forall x _ i \lnot \psi \to \tau)$
- Def. $\exists$: $(\exists x _ i \psi \to \tau)$
where in (7), $x _ i \notin \text{Free}(\lnot \tau)$ because $\tau$ is a sentence, so the conditions for A5 are met.
@example~