Notes - Continuous Mathematics HT23, Misc


Flashcards

If

\[\mathbf{v}=\left[\begin{array}{c} v_{1} \\\\ v_{2} \\\\ \vdots \\\\ v_{n} \end{array}\right], \mathbf{w}=\left[\begin{array}{c} w_{1} \\\\ w_{2} \\\\ \vdots \\\\ w_{m} \end{array}\right]\]

then what is the outer product $\pmb v \otimes \pmb w$?


\[\pmb v \pmb w^\intercal =\left[\begin{array}{cccc} v_{1} w_{1} & v_{1} w_{2} & \cdots & v_{1} w_{m} \\\\ v_{2} w_{1} & v_{2} w_{2} & \cdots & v_{2} w_{m} \\\\ \vdots & \vdots & \ddots & \vdots \\\\ v_{n} w_{1} & v_{n} w_{2} & \cdots & v_{n} w_{m} \end{array}\right]\]

If

\[\mathbf{v}=\left[\begin{array}{c} v_{1} \\\\ v_{2} \\\\ \vdots \\\\ v_{n} \end{array}\right], \mathbf{w}=\left[\begin{array}{c} w_{1} \\\\ w_{2} \\\\ \vdots \\\\ w_{m} \end{array}\right]\]

then what is the $(i, j)$th entry in the outer product $\mathbf v \otimes \mathbf w$?


\[(\mathbf v \otimes \mathbf w)_{ij} = v_i w_j\]

Given an $n \times m$ matrix $A$ with rows $\pmb a _ i$, how can you simplify

\[\sum_{i=1}^n \pmb a_i^\intercal \pmb a_i\]

?


\[A^\intercal A\]



Related posts