Proofs - Linear Algebra I MT22
Steinitz exchange lemma
Prove the Steinitz exchange lemma:
Let $V$ be a vector space and let $X = \{v _ 1, v _ 2, \ldots, v _ n\} \subseteq V$. Suppose that $u \in \langle X \rangle$ but that $u \notin \langle X \backslash \{v _ i\} \rangle$ for some $i$. Let $Y = (X \backslash \{v _ i\}) \cup \{u\}$. Then $\langle Y \rangle = \langle X \rangle$.
Let $V$ be a vector space and let $X = \{v _ 1, v _ 2, \ldots, v _ n\} \subseteq V$. Suppose that $u \in \langle X \rangle$ but that $u \notin \langle X \backslash \{v _ i\} \rangle$ for some $i$. Let $Y = (X \backslash \{v _ i\}) \cup \{u\}$. Then $\langle Y \rangle = \langle X \rangle$.
Todo?
Prove, using the Steinitz exchange lemma, that linearly independent sets are always smaller than or equal in size to spanning sets:
Let $V$ be a vector space and let $S, T$ be finite subsets of $V$. If $S$ is linearly independent and $T$ spans $V$, then $ \vert S \vert \le \vert T \vert $.
Let $V$ be a vector space and let $S, T$ be finite subsets of $V$. If $S$ is linearly independent and $T$ spans $V$, then $ \vert S \vert \le \vert T \vert $.
Todo?
Prove, by quoting a theorem:
Let $V$ be a finite-dimensional vector space. All bases of $V$ are finite and of the same size.
Let $V$ be a finite-dimensional vector space. All bases of $V$ are finite and of the same size.
Todo?
The dimension formula
Prove the dimension formula:
Let $U, W$ be subspaces of a finite dimensional vector space $V$. Then $\dim(U+W) + \dim(U \cap W) = \dim(U) + \dim(W)$.
Let $U, W$ be subspaces of a finite dimensional vector space $V$. Then $\dim(U+W) + \dim(U \cap W) = \dim(U) + \dim(W)$.
Todo?
The rank-nullity theorem
Prove the rank-nullity theorem:
Let $V, W$ be finite dimensional vector spaces and $T: V \to W$ a linear transformation. Then $\text{rank}(T) + \text{nullity}(T) = \dim V$ .
Let $V, W$ be finite dimensional vector spaces and $T: V \to W$ a linear transformation. Then $\text{rank}(T) + \text{nullity}(T) = \dim V$ .
Todo?
Change of basis theorem
Prove an important precursor to the change of basis theorem,
Let $U, V, W$ be finite-dimensional vector spaces with dimensions $m, n, p$ and ordered bases $\mathcal{U}, \mathcal{V}, \mathcal{W}$. Let $S : U \to V$ and $T : V \to W$ be linear.
Let $A = {} _ \mathcal{V}S _ \mathcal{U}$ and $B = {} _ \mathcal{W}T _ \mathcal{V}$. Then $BA = {} _ \mathcal{W}TS _ \mathcal{U}$.
Let $U, V, W$ be finite-dimensional vector spaces with dimensions $m, n, p$ and ordered bases $\mathcal{U}, \mathcal{V}, \mathcal{W}$. Let $S : U \to V$ and $T : V \to W$ be linear. Let $A = {} _ \mathcal{V}S _ \mathcal{U}$ and $B = {} _ \mathcal{W}T _ \mathcal{V}$. Then $BA = {} _ \mathcal{W}TS _ \mathcal{U}$.
Todo?
Prove the change of basis theorem:
Let $V$ be a finite-dimensional vector space with ordered bases $\mathcal{V}, \mathcal{V}’$.
Let $W$ be a finite-dimensional vector space with ordered bases $\mathcal{W}, \mathcal{W}’$.
Let $T : V \to W$ be a linear map. Then ${} _ \mathcal{W’}T _ \mathcal{V’} = ({} _ \mathcal{W’}I _ \mathcal{W})({} _ \mathcal{W}T _ \mathcal{V})({} _ \mathcal{V}I _ \mathcal{V’})$
Let $V$ be a finite-dimensional vector space with ordered bases $\mathcal{V}, \mathcal{V}’$. Let $W$ be a finite-dimensional vector space with ordered bases $\mathcal{W}, \mathcal{W}’$. Let $T : V \to W$ be a linear map. Then ${} _ \mathcal{W’}T _ \mathcal{V’} = ({} _ \mathcal{W’}I _ \mathcal{W})({} _ \mathcal{W}T _ \mathcal{V})({} _ \mathcal{V}I _ \mathcal{V’})$
Todo?
Row rank and column rank
Prove, by appealing to the RREF, that the column rank and the row rank are equal.
Todo?
Cauchy-Schwarz Inequality
Prove the Cauchy-Schwarz inequality:
For $v, w$ in an inner product space $V$, then $ \vert \langle v, w\rangle \vert \le \vert \vert v \vert \vert \text{ } \vert \vert w \vert \vert $.
For $v, w$ in an inner product space $V$, then $ \vert \langle v, w\rangle \vert \le \vert \vert v \vert \vert \text{ } \vert \vert w \vert \vert $.
Todo?
Triangle Inequality
Prove the triangle inequality in an inner product space:
For $v, w$ in an inner product space $V$, then $ \vert \vert v+w \vert \vert \le \vert \vert v \vert \vert + \vert \vert w \vert \vert $.
For $v, w$ in an inner product space $V$, then $ \vert \vert v+w \vert \vert \le \vert \vert v \vert \vert + \vert \vert w \vert \vert $.
Todo?