Probability MT22, Random samples


Flashcards

What is

\[\text{Var}\left( \sum^n _ {i=1} X _ i \right)\]

?


\[\sum _ {i=1}^n \text{Var}(X _ i) + 2\sum _ {1 \le i < j \le n} \text{Cov}(X _ i, X _ j)\]

What is a random sample of a distribution?


Independent random variables $X _ 1, X _ 2, \ldots, X _ n$ with the same distribution.

Given a random sample (i.i.d. r.v.s.) $X _ 1, \ldots, X _ n$, what is the sample mean $\overline{X _ n}$?


\[\frac{1}{n} \sum^n _ {i=1} X _ i\]

Given a random sample (i.i.d. r.v.s.) $X _ 1, \ldots, X _ n$, what is the sample mean $\mathbb{E}[\overline{X _ n}]$?


\[\mu\]

Given a random sample (i.i.d. r.v.s.) $X _ 1, \ldots, X _ n$, what is the sample mean $\text{Var}(\overline{X _ n})$?


\[\frac{\sigma^2}{n}\]

Suppose that $X _ 1, X _ 2, \ldots, X _ n$ form a random sample from a distribution with mean $\mu$ and variance $\sigma^2$. @Prove that

  1. $\mathbb E [\overline X _ n] = \mu$
  2. $\text{var}(\overline X _ n) = \frac {\sigma^2} n$

@todo (probability, page 63).

@important~




Related posts