Computational Complexity HT25, Common proof themes


Diagonalisation

Padding arguments

  • Shows that if some complexity classes are equal, then this result can be “powered up” to larger complexity classes
  • [[Notes - Computational Complexity HT25, Nondeterminism]]U
    • Proves $\mathsf P = \mathsf{NP}$ implies $\mathsf{EXP} = \mathsf{NEXP}$
  • From problem sheets / exams:
    • If $\mathsf{DTIME}(T(n)) \subseteq \mathsf{DSPACE}(S(n))$, then $\mathsf{DTIME}(T(2^n)) \subseteq \mathsf{DSPACE}(S(2^n))$ (problem sheet)
    • Show $\mathsf{DSPACE}(n) \ne \mathsf P$, does it follow $\mathsf{DSPACE}(n) \subsetneq P$, via contradicting the space hierarchy theorem (problem sheet)
    • Every tally language in $\mathsf{NP}$ is in $\mathsf{P}$ iff $\mathsf{NE} = \mathsf{E}$ (problem sheet)
    • $\mathsf{NSPACE}(n) \subsetneq \mathsf{NSPACE}(n^{1.1})$ using a padding argument and a deterministic space hierarchy theorem

Tableaus / locality of computation

Recursion / dynamic programming

Error amplification

Crossing sequences

  • From problem sheets:
    • Proves that $\mathsf{PAL}$ cannot be decided in time $o(n^2)$ on a 1-tape TM (in a problem sheet)
    • Proves that PAL is not in $\mathsf{NTISP}(n^{1.1}, n^{0.1})$



Related posts